
Chapter 12

MODE MIXING

As the beam intensity increases, the shift of each azimuthal mode becomes so big that

two adjacent modes overlap each other. The azimuthal mode number is no longer a good

eigen-number, and we can no longer represent the perturbation distribution ψ1 as a single

azimuthal mode; instead it should be a linear combination of all azimuthal modes. This

phenomenon has been referred to as “mode-mixing,” “mode-coupling,” “strong head-tail,”

and “transverse or longitudinal turbulence.”

12.1 TRANSVERSE

Let us first consider transverse instability driven by a broad-band impedance. This

implies a single bunch mechanism. Also we set the chromaticity to zero. For the m-th

azimuthal mode and k-th radial mode, Eq. (9.32) or (10.1) becomes

(Ω−mωs)δmm′δkk′ = Mmm′kk′ (12.1)

where, with the aid of Eq. (9.32), the matrix M is defined as

Mmm′kk′ = − ieIbc

2ωβE0τL

∫
dωZ⊥1 (ω)λ̃m′k′(ω)λ̃∗mk(ω)∫

dωλ̃mk(ω)λ̃∗mk(ω)
. (12.2)

The summations have been converted to integrations because the impedance is so broad-

band that there is no need to distinguish the individual betatron lines. A further sim-

plification is to keep only the first most easily excited radial modes. Then, the problem

becomes coupling in the azimuthal modes.
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SinceReZ⊥1 (ω) is odd in ω and ImZ⊥1 (ω) is even in ω, only ImZ⊥1 (ω) will contribute

to the diagonal terms of the matrix M giving only real frequency shifts which will not

lead to instability. As the beam current becomes larger, two modes will collide and merge

together, resulting in two complex eigen-frequencies, one is the complex conjugate of the

other, thus introducing instability. Therefore, coupling should originate from the off-

diagonal elements closest to the diagonal. We learn from Eq. (9.42) that the m-th mode

of excitation λ̃m(ω) is even in ω when m is even, and odd in ω when m is odd. Thus, it

is ReZ⊥1 (ω) that gives the coupling.

The eigen-angular-frequencies are solved by

det[(Ω− ωβ −mωs)I −M ] = 0 . (12.3)

As an example, an airbag model is perturbed by the impedance

Z⊥1 (ω) =
W1

ω + iε
= ℘

(
W1

ω

)
− iπW1δ(ω) , (12.4)

which corresponds to a constant wake function W1. The infinite matrix is truncated and

the eigenvalues solved numerically. The solution is shown in Fig. 12.1 [2]. This impedance

corresponds to a real part that falls off as frequency increases. The imaginary part is a

δ-function at zero frequency, and therefore interacts with the m = 0 mode only. This

explains why all other modes remain almost unshifted with the exception of m = 0. The

downward frequency shift of the m = 0 mode as the beam intensity increases from zero is

a general behavior for short bunches. The transverse wake force produced by an off-axis

beam has the polarity that deflects the beam further away from the pipe axis. This force

acts as a defocusing force for the rigid beam mode, and therefore the frequency shifts

downward. Such a down shift of the betatron frequency is routinely observed in electron

accelerators and serves as an important tool of probing the impedance. Eventually the

m = 0 shifts downwards and meets with the m = −1 mode, thus exciting an instability.

The threshold is at

η1 =
πeIbcW1

4E0ωβωs
≈ 1.8 , (12.5)

and is bunch-length independent. We can also obtain an approximate threshold from

Eqs. (12.1) and (12.2) by equating the frequency shift to ωs, and get

eIbc Z⊥1
∣∣
eff

2E0ωβωsτL
≈ 1 , (12.6)
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η1 =
πeIbcW1

4E0ωβωs

Figure 12.1: Transverse mode frequencies (Ω−ωβ)/ωs versus the current inten-
sity parameter η1 for an air-bag bunch distribution perturbed by a constant wake
potential W1. The instability occurs at η1 ≈ 1.8, when the m = 0 and m = 1
modes collide. The dashed curves are the imaginary part of the mode frequencies
or growth/damping rate for the two colliding modes.

where

Z⊥1
∣∣
eff

=

∫
dωZ⊥1 (ω)hm(ω)∫

dωhm(ω)
(12.7)

is called the effective transverse impedance for mode m. Comparing Eqs. (12.5) and (12.6),

we find the two thresholds are almost the same except for the bunch-length dependency,

which we think should be understood as follows. The imaginary part of the impedance in

Eq. (12.4) is a δ-function at zero frequency which interacts only with the m = 0 mode. As

the bunch length becomes shorter, the spectrum spreads out wider, so that the spectrum

at zero frequency becomes smaller. In fact, from Eqs. (9.43) and (9.44), it is clear that
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Z⊥1
∣∣
eff
∝ τL, thus explaining why η1 in Eq. (12.5) is bunch-length independent.

Now consider the situation when the impedance is a broad-band resonance. For a

very short bunch, the m = 0 mode extends to very high frequencies and will cover part of

the high-frequency capacitive part of the resonance. Thus the effective impedance Z⊥1 |eff

can become small due to the cancellation of the inductive and capacitive parts. At the

same time, the peak of ReZ⊥1 is far from the peak of the m = −1 mode, thus making the

coupling between the m = 0 and m = −1 mode very weak. Since the frequency shift is

small and the coupling is weak, it will take a much higher beam current for the m = 0

mode to meet with the m = −1 mode, thus pushing up the threshold current. For a long

bunch, the m = 0 mode has a small frequency spread. If it stays inside the inductive region

where ImZ⊥1 is almost constant, Z⊥1
∣∣
eff

will be almost constant and the threshold current

increases linearly with the bunch length. When the bunch is very long, the m = ±1 and

even m = ±2 and m = ±3 modes may stay inside the constant inductive region of the

impedance. This implies that the higher azimuthal modes also interact strongly with the

impedance and these modes will have large shifts so that the threshold can become much

smaller. Several collisions may occur around a small beam-current interval and the bunch

can become very unstable suddenly.

The transverse mode-coupling instability was first observed at PETRA and later also

at PEP and LEP. The strong head-tail instability is one of the cleanest instabilities to

observe in electron storage rings [1]. In particular, one may measure the threshold beam

intensity when the beam becomes unstable transversely. Another approach is to measure

the betatron frequency as the beam intensity is varied. From the shift of the betatron

frequency per unit intensity increase, the transverse wake can be inferred. The transverse

motion of the bunch across its length can also be observed easily using a streak camera.

In the longitudinal mode-mixing instability, the bunch lengthens as the beam becomes

unstable essentially without losing beam particles. This does not happen in the trans-

verse case. The instability is devastating; as soon as the threshold is reached, the bunch

disappears. However, so far no strong head-tail instabilities have ever been observed in

hadron machines.

Radiation damping is too slow to damp the strong head-tail instability. A damper

significantly faster than ωs is required. As shown in Fig. 12.1, it is mode m = 0 that is

shifted downward to collide with mode m = −1 so as to start the instability. But mode

m = 0 is the pure rigid dipole betatron oscillation with synchrotron motion. Therefore

if we can introduce a positive coherent betatron tune shift, it will slow this mode from
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coming down and therefore push the threshold to a higher value. A conventional feedback

system is resistive; i.e., the kicker is located at an odd multiple of 90◦ from the pickup.

Here, a reactive feedback system is preferred [2]. The kicker is located at an even multiple

of 90◦ from the pickup. In a two-particle model, where the bunch is represented by two

macro-particles, the equations of motion are, in the first half of the synchrotron period,

d2y1

dn2
+ (2πνβ)2y1 = σ(y1 + y2) ,

d2y2

dn2
+ (2πνβ)2y2 = σ(y1 + y2) + αy1 , (12.8)

where y1 and y2 are, respectively, the transverse displacements of the head and tail macro-

particles, σ is the gain of the reactive feed back, and α represents the effect of the trans-

verse wake from head to tail. Notice that the reactive feedback acts on the center of the

bunch and is in phase with the particle displacements. It therefore modifies νβ by intro-

ducing a tune shift. The instability threshold can then be raised by properly choosing the

feedback strength σ. In low-energy hadron machines, the space-charge tune shift consti-

tutes a natural reactive feedback system which tends to shift the m = 0 mode upwards.

We shall study this more in detail in the next section.

This instability can also be damped by BNS damping [3], which delivers a betatron

tune spread from the head of the bunch to the tail. This can be achieved by tilting the

longitudinal phase space distribution of the bunch so that the tail has a lower energy

relative to the head through chromaticity. Another method to implement BNS damping

is to introduce a radio-frequency quadrupole magnet system, so that particles along the

bunch will see a gradual shift in betatron tune.

12.2 SPACE CHARGE AND MODE COUPLING

It was reported in a recent paper of Blaskiewicz [4] that the space-charge tune shift

can strongly damp the transverse mode coupling instability (TMCI), which is also known

as strong head-tail instability. The investigation was made on the basis of particle tracking

and the analytically solvable square-well air-bag model [5], with the bunch distribution in

the longitudinal phase space,

Ψ(φ,∆E) = 1
2
ρ(φ)[δ(∆E − ∆̂E) + δ(∆E + ∆̂E)] , (12.9)

where ρ(φ) = 1/(2π) is the linear distribution or the projection onto the longitudinal axis.
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Figure 12.2: Left: The transverse wake force shifts mostly the azimuthal 0 mode downward

but not the other modes. Instability occurs when the 0 and −1 modes meet with each

other. Right: The space-charge force in the absence of the wake forces shifts all modes

downward with the exception of the 0 mode.

In this model the synchrotron phase φ ranges from −π to 0 at ∆E = −∆̂E and from π

to 0 at ∆E = ∆̂E, with φ = 0 representing the head of the bunch.

What is going to be presented here is a qualitative explanation why the space charge

helps TMCI. Without space charge, the bunch starts to be unstable when two neighboring

synchro-betatron modes merge under the influence of the wake forces. Typically, the pure

betatron mode (the azimuthal or synchrotron harmonic 0 mode, also known as the rigid-

bunch mode) is affected by the wake force and shifts downward, while the other azimuthal

modes are not much affected, at least at low intensity. The transverse wake force produced

by an off-axis beam has the polarity that deflects the beam further away from the pipe

axis. This force acts as a defocusing force for the rigid beam mode, and therefore the

frequency shifts downward. Such a down-shift of the betatron frequency is routinely

observed in electron rings and serves as an important tool of probing the impedance. As

a result, the instability threshold is determined by the coupling of the 0 and −1 modes,

as illustrated in the left plot of Fig. 12.2, (see below for definitions of parameters).

The space charge by itself also shifts all the frequencies downward, as illustrated in

the right plot of Fig. 12.2. The only exception is the azimuthal 0 mode, which describes

the motion of the bunch as a whole, and, therefore, is not influenced by the space charge

at all. Thus, in the presence of space charge, the 0 mode will couple with the −1 mode
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at a higher current intensity and therefore the threshold is raised in the presence of space

charge. This is illustrated in the left plot of Fig. 12.3.

Let us go in more details with mathematics. The transverse displacement x(φ) of a

particle at the synchrotron phase φ satisfies the equation of motion:

d2x(φ)

dt2
+ ω2

βx(φ) = F (φ) + Sρ(φ)[x(φ)− x̄(φ)] , (12.10)

where ωβ/(2π) is the unperturbed betatron frequency and the smooth approximation for

the betatron oscillations has been applied. To incorporate synchrotron oscillation, the

full time derivative takes the form

d

dt
=

∂

∂t
+ ωs

∂

∂φ
, (12.11)

with ωs/(2π) being the synchrotron frequency. The right-hand side of Eq. (12.10) contains

the transverse driving forces. The first term is the transverse wake force

F (φ) = −Nbe2c2

E0C

∫ |φ|
0

W1[z(φ′) − z(φ)]ρ(φ′)x̄(φ′)dφ′ , (12.12)

where Nb is the number of particles in the bunch, W1 the transverse wake function,

z(φ) the longitudinal position of the beam particle. The second term is the space-charge

contribution. It is proportional to the linear density ρ(φ) and the displacement relatively

the local beam center x(φ) − x̄(φ), with the constant S representing the space-charge

strength.

To solve the problem quantitatively, we expand the offset into the synchrotron har-

monics (or azimuthals):

x(φ, t) = e−iωβt−iΩt
∞∑

n=−∞
xne

inφ , (12.13)

where Ω/(2π) is the collective frequency shift. In this air-bag model, all particles reside

at the edge of the bunch distribution in the longitudinal phase space. Note that because

of the square-well air-bag model, these synchrotron azimuthals are slightly different from

the conventional ones. The average offset at the synchrotron phase φ is therefore given

by

x̄(φ, t) = 1
2

[x(φ, t) + x(−φ, t)] = e−iωβt−iΩt
∞∑

n=−∞
xn cosnφ . (12.14)
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Figure 12.3: Left: With the transverse space-charge force added to the wake forces, all

modes except the 0 mode are shifted downward, thus requiring the 0 and −1 modes to

couple at a much higher current threshold. Right: When space charge reaches the critical

value of ξ = 5, the −1 mode is shifted away from the 0 mode by so much that they do

not couple anymore.

Following basically Ref. [6], Eq. (12.10) transforms into an eigenvalue equation,(
Ω

ωs
− n
)
xn = −K

∞∑
m=−∞

xm (Wnm + ξQnm) . (12.15)

Here, the current parameter is written as

K =
Nbe2c2W0

2π2ωβωsCE0
. (12.16)

The wake matrix elements are then given by

Wnm =

∫ π

0

dφ

∫ φ

0

dφ′w[z(φ′)− z(φ)] cos(nφ) cos(mφ′) , (12.17)

where the wake function is presented as W (z) = −W0w(z) with W0 serving as a normal-

izing constant. The space-charge parameter

ξ =
∆ωβ
2Kωs

(12.18)

is a current-dependent ratio of the incoherent tune shift

∆ωβ =
Sρ

2ωβ
(12.19)
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to the current parameter K. The space-charge matrix elements are

Qnm = δnm − δn,−m (12.20)

in the assumed air-bag distribution.

Without wake forces, the eigenvalue equation leads to the mode behavior presented

in the right plot of Fig. 12.2. For the simplest step-like wake function w(z) = −H(z),

H(z) being the Heaviside step function, and without space charge (ξ = 0), the mode

coupling is shown in the left plot of Fig. 12.2, where the threshold is K = 0.73. Now

space charge is introduced with the space-charge parameter ξ = 4. We do see in the left

plot of Fig. 12.3 that, because the −1 mode is shifted downward by the space charge, the

instability threshold has been pushed up to K = 1.25 as compared with the left plot of

Fig. 12.2.

Further increasing the space-charge parameter to ξ = 5, we see in the right plot of

Fig. 12.3 that modes 0 and −1 do not merge any more. What is not shown in the plot is a

much higher new threshold where the 0 mode couples with the 1 mode instead. This new

threshold is very much model dependent. In the present model, it depends strongly on

the number of modes included in the truncated matrix. For truncation at modes |n| = 32,

this new threshold is at least a factor of 30 higher than when space charge is absent. A

dependence of the calculated threshold Kth on the mode truncation number |n| was found

as Kth ∝ |n|1/2 for |n| ≤ 10 and even weaker,

Kth ∝ |n|1/3 , (12.21)

for 10 ≤ |n| ≤ 32. The divergence is caused by the fact that the Fourier components of

the space charge in Eq. (12.20) do not roll off at high frequencies. Taking into account

the finite value of the ratio of transverse bunch size σ⊥ to longitudinal bunch size σ‖,

we estimate this roll off limit as |n| ' σ⊥/σ‖ ' 200 to 1000 for typical hadron bunches.

Extrapolation of the dependence Eq. (12.21) into this area brings to a conclusion that

the actual threshold can be 2 to 3 times higher than the result reported for |n| = 32. So

for this simplified wake-beam model, the space charge is found to be able to increase the

TMCI threshold by a factor of 50 to 100.

Unlike the longitudinal mode-coupling instability where the bunch may just lengthen

as the beam becomes unstable essentially without losing beam particles, the transverse

mode-coupling instability is fast and violent, often resulting in beam loss. TMCI in

electron machines are usually damped with a reactive feedback system; i.e., the kicker is



12-10 CHAPTER 12. MODE MIXING

located at an even multiple of 90◦ from the pickup [2]. This implies the addition of a term

Gx̄(φ) to the right-hand side of Eq. (12.10), where G is the gain of the feedback system.

Notice that the reactive feedback acts on the center of the bunch and is in phase with the

particle displacements; hence the term reactive. It therefore modifies the betatron tune

by introducing a tune shift. Thus, only the 0 mode is affected but not the other modes.

The instability threshold can then be raised by properly choosing the strength and sign of

the feedback gain G so that the 0 mode has a positive shift. The space-charge tune shift

in a proton machine, as discussed above, constitutes a natural inverse reactive feedback.

12.3 LONGITUDINAL

The azimuthal modes are not a good description of the collective motion of the

bunch when the beam current is high enough. Therefore there is also mode-coupling in

the longitudinal motion. Similar to the transverse coupled problem in Eqs. (12.1) and

(12.2), we have here

(Ω−mωs)δmm′δkk′ = Mmm′kk′ (12.22)

where, with the aid of Eq. (9.36), the matrix M is defined as

Mmm′kk′ =
im

1+m

4π2eIbη

3β2E0ωsτ 3
L

∫
dω
Z
‖
0 (ω)

ω
λ̃m′k′(ω)λ̃∗mk(ω)∫

dωλ̃mk(ω)λ̃∗mk(ω)
, (12.23)

where the unperturbed distribution has been assumed to be parabolic. Again here the

impedance is broad-band so that the discrete summations over the synchrotron side-bands

have been replaced by integrals. We have also thrown away all the higher-order radial

modes keeping the most easily excited k = 0. Exactly the same as in the transverse

situation, only ImZ‖0 (ω)/ω contributes to the diagonal elements of the coupling matrix

and thus to the real frequency shifts of the modes. The coupling of two modes, mostly

adjacent, will give instability, which is determined by ReZ‖0 (ω)/ω in the off-diagonal

elements next to the diagonal ones. All the discussions about bunch-length dependency

on threshold in the transverse case apply here also. A rough estimate of the threshold

can be obtained from Eq. (12.23) by equating the frequency shift to ωs. The threshold is

therefore

η2 =
4π2eIbη

3β2E0ω2
sτ

3
L

Z‖0
ω

∣∣∣∣∣
eff

≈ 1 , (12.24)
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ε =
4π2eIbη

3β2E0ω2
sτ

3
L

Rs

ωr

Figure 12.4: Coupling of modes m = 6 and 7 in the presence of a resonance at
xr = 7.5 and Q = 1 above transition.

where the effective longitudinal impedance for mode m is defined as

Z‖0
ω

∣∣∣∣∣
eff

=

∫
dω
Z
‖
0 (ω)

ω
hm(ω)∫

dωhm(ω)
, (12.25)

For convenience, let us introduce a parameter x = ωτL/π, so that, with the exception

of m = 0 which is not an allowed mode in the longitudinal motion, the m-th mode of

excitation peaks at x ≈ m+1 and has a half width of ∆x ≈ 1. Now consider the Fermilab

Main Ring with a revolution frequency 47.71 kHz and total bunch length τL ≈ 2 ns.

Assume the impedance to be broad-band centered at xr = 7.5 or fr ∼ 1.88 GHz and

quality factor Q = 1. Numerical diagonalization of the coupling matrix gives frequency

shifts as shown in Fig. 12.4 [8]. We see the first instability occurs when mode m = 6

couples with mode m = 7, and in the vicinity of the threshold, there are also couplings
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between modes m = 4 and 5 and modes m = 8 and 9. This happens because the resonance

centered at xr = 7.5 has a half width ∆xr = xr/(2Q) = 3.75. Thus the ReZ‖0/ω resonant

peak encompasses modes m = 4 to 9, which peak at x = 5 to 10. This is a typical picture

of mode-coupling instability for long bunches. From the figure, the first instability occurs

at

ε =
4π2eIbη

3β2E0ω2
sτ

3
L

Rs

ωr
≈ 0.93 . (12.26)

On the other hand, the Keil-Schnell criterion of Eq. (5.19) gives a threshold of

eIbη

β2E0ω2
sτ

3
L

Rs

ωr
=

1

6π

1

F
, (12.27)

where F is the form factor. This is equivalent to

ε =
2π

9

1

F
. (12.28)

Thus the mode-coupling threshold is very close to the Keil-Schnell threshold. However,

mode-coupling instability is quite different from microwave instability. In the latter, pure

reactive impedance can drive an instability; for example, the negative-mass instability

just above transition is driven by the space-charge force. It can be demonstrated that

pure capacitive impedance will only lead to real frequency shifts of the modes. Although

two modes may cross each other, they will not be degenerate to form complex modes.

Thus, there is no instability.

When the bunch is short, the modes of excitation spread out to higher frequencies.

Therefore when the bunch is short enough, the resonant peak of ReZ‖0/ω will encompass

only modes m = 1 and 2. Thus, we expect these two modes will collide first to give

instability. The m = 1 is the dipole mode and is not shifted at low beam current because

the bunch center does not see any reactive impedance. The m = 2 is the quadrupole

mode, which is shifted downward above transition. This downshift is a way to measure

the reactive impedance of the ring.

When the beam current is above threshold and instability starts, the energy spread

increases and so does the bunch length. In an electron ring where there is radiation

damping, there is no overshooting and the increase stops when the stability criterion is

fulfilled again. The bunch lengthening is therefore determined by the stability criterion.

If the bunch samples the impedance at a frequency range where Z‖0 (ω) ∝ ωa, the effective
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impedance is

Z
‖
0

ω

∣∣∣∣∣
eff

∝

∫
dω ωa−1hm(ω)∫
dω hm(ω)

∝ τ 1−a
L , (12.29)

where use has been made of the fact that the power spectrum hm is a function of the

dimensionless quantity ωτL according to Eq. (9.43) and the result is independent of the

functional form of hm. From the threshold condition in Eq. (12.24), we have

4π2eIbη

3β2E0ω2
sτ

2+a
L

≈ 1 . (12.30)

Thus the bunch length obeys the scaling criterion of

τL ∝ ξ1/(2+a) , (12.31)

where

ξ =
ηIb
ν2
sE0

(12.32)

is the scaling parameter introduced by Chao and Gareyte [2].

Longitudinal mode-coupling is different from transverse mode-coupling. In the latter,

the betatron frequency (m = 0) is shifted downward to meet with the m = −1 mode.

The amount of shift is small, since νs/[νβ ]� 1, where [νβ] is the residual betatron tune.

Transverse mode-coupling has been measured in many electron rings and the results agree

with theory.

In the longitudinal case, the synchrotron quadrupole frequency (m = 2) has to be

shifted downward to meet with the synchrotron dipole frequency (m = 1) and this shift

is 100% of the synchrotron tune. At LEP which is above transition, we expect the

synchrotron quadrupole mode to shift downward when the beam current increases from

zero. However, it was observed that this mode shifts slightly upward instead. Since the

dipole frequency is not shifted, it is hard to visualize how the two modes will be coupled.

Some argue that the coupling may not be between two azimuthal modes, but instead

between two radial modes that we have discarded in our discussion. But the coupling

between two radial modes is generally much weaker. Some say that the actual coupling

of the two modes has never been observed experimentally, and the scaling law for bunch

lengthening may have been the result of some other theories. Anyway, the theory of

longitudinal mode-coupling is far from satisfactory.
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12.4 EXERCISES

12.1. There is a simple two-particle model to demonstrate transverse mode coupling [2].

Assume the head and tail particles are always separated by ẑ for one half of a syn-

chrotron period Ts and exchange position for the other half. Similar to Exercise 11.2,

we have during 0 < s/v < Ts/2,

y′′1 + k2
βy1 = 0 ,

y′′2 + k2
βy1 = −e

2NW1(ẑ)

2E0C
y1 . (12.33)

(1) Show that the solution is

ỹ1(s) = ỹ1(0)e−ikβs , (12.34)

ỹ2(s) = ỹ2(0)e−ikβs − ie
2NW1(ẑ)

4E0Ckβ

[
ỹ∗1(0)

kβ
sin(kβs) + ỹ1(0) s e−ikβs

]
,(12.35)

where

ỹ` = y` + i
y′`
kβ
, ` = 1, 2 . (12.36)

The term with sin(kβs) in Eq. (12.35) can be dropped because ωβTs/2 � 1. We

can therefore write (
ỹ1

ỹ2

)
s=vTs/2

= e−iωβTs/2
(

1 0

iΥ 1

)(
ỹ1

ỹ1

)
s=0

, (12.37)

where

Υ = −πe
2NW1v2

4E0Cωβωs
. (12.38)

(2) During Ts/2 < s/v < Ts, show that we have instead

y′′1 + k2
βy1 =

e2NW1(ẑ)

2E0C
y2 ,

y′′2 + k2
βy1 = 0 , (12.39)

so that for one synchrotron period,(
ỹ1

ỹ1

)
s=vTs

= e−iωβTs
(

1 iΥ

0 1

)(
1 0

iΥ 1

)(
ỹ1

ỹ1

)
s=0

. (12.40)
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(3) Show that the two eigenvalues are

λ± = e±iφ , sin
φ

2
=

Υ

2
, (12.41)

and stability requires Υ ≤ 2. Compare the result with Eq. (12.5). Note that for a

short bunch W1(ẑ) < 0; thus Υ is positive.

12.2. In the two-particle model in Exercise 12.1, if the beam current is slightly above

threshold; i.e.,

Υ = 2 + ε , (12.42)

where ε� 1, compute the complex phase φ of the eigenvalues λ±. The growth rate

is then
1

τ
=
Imφ

Ts
=

2
√
ε

Ts
. (12.43)

Show that for an intensity 10% above threshold, the growth time is of the order of

the synchrotron period.

12.3. For longitudinal mode-coupling, the coupling matrix of Eq. (12.23) can be written

as, after keeping only the lowest radial modes,

Mmm′ = εωsAmm′ (12.44)

where ε is given by Eq. (12.26),

Amm′ =
im

1+m

∫
dω
ωrẐ

‖
0 (ω)

ω
λ̃m′(ω)λ̃∗m(ω)∫

dωλ̃m(ω)λ̃∗m(ω)
, (12.45)

and Ẑ
‖
0(ω) has been normalized to the shunt impedance Rs.

If the coupling is not too strong, we can truncate the matrix to 2×2 for the coupling

between two modes:∣∣∣∣∣∣∣
Ω

ωs0
−m− εAmm εAmm′

εAm′m
Ω

ωs
−m′ − εAm′m′

∣∣∣∣∣∣∣ = 0 . (12.46)

(1) Show that the collective frequency is given by

Ω = 1
2
ωs
[
(νm + νm′)±

√
(νm′ − νm)2 + 4ε2Amm′Am′m

]
, (12.47)
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where νk = k + εAkk, k = m or m′.

(2) For simplicity, let us neglect the factorm/(1+m) on the right side of Eq. (12.45).

For two adjacent modes (m′ = m + 1) that are coupled by a resonant peak, the

higher-frequency mode samples mostly the capacitive part of the resonance while

the lower-frequency mode samples the inductive part. Therefore Amm−Am′m′ > 0.

Show that Amm′Am′m = −|Amm′|2 and the threshold of instability εth is given by

|εthAmm′| = 1
2
|εth(Am′m′ −Amm)− 1| . (12.48)

The solution is different depending on whether the bunch energy is above or below

transition:

εth =
1

2|Amm′|+ |Am′m′ −Amm|
above transition,

|εth| =

∣∣∣∣ 1

2|Amm′ | − |Am′m′ − Amm|

∣∣∣∣ below transition. (12.49)

The above shows that the threshold will be higher when the ring is below transition.

For this reason, it is advantageous for the ring to be of imaginary γt [9].

(3) When the impedance is purely reactive, the next-to-diagonal off-diagonal ele-

ments are zero. So we talk about coupling of two modes m and m′ = m+ 2 instead.

Show that Amm′Am′m = |Amm′|2 and instability cannot occur.

(4) Show that the same conclusions in Parts (b) and (c) can be drawn when the

factor m/(1 +m) is not neglected in Eq. (12.45), although Eqs. (12.48) and (12.49)

will be slightly modified.
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